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a b s t r a c t

We construct an approximation of the free space Green’s function for the Helmholtz equa-
tion that splits the application of this operator between the spatial and the Fourier
domains, as in Ewald’s method for evaluating lattice sums. In the spatial domain we con-
volve with a sum of decaying Gaussians with positive coefficients and, in the Fourier
domain, we multiply by a band-limited kernel. As a part of our approach, we develop
new quadratures appropriate for the singularity of Green’s function in the Fourier domain.
The approximation and quadratures yield a fast algorithm for computing volumetric con-
volutions with Green’s function in dimensions two and three. The algorithmic complexity
scales as Oðjd log jþ Cðlog ��1ÞdÞ, where � is selected accuracy, j is the number of wave-
lengths in the problem, d is the dimension, and C is a constant. The algorithm maintains its
efficiency when applied to functions with singularities. In contrast to the Fast Multipole
Method, as j ! 0, our approximation makes a transition to that of the free space Green’s
function for the Poisson equation. We illustrate our approach with examples.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

In many applied fields including acoustics, quantum mechanics, and electromagnetics, we encounter the need to compute
convolutions with the free space Helmholtz Green’s function. In these fields problems of interest often involve media or
potentials described by functions with discontinuities or singularities. However, it is difficult to construct fast and accurate
algorithms to compute convolutions with such functions entirely in spatial or entirely in the Fourier domain. In the spatial
domain, a straightforward discretization of Green’s function results in dense matrices, whereas in the Fourier domain slow
decay of the product requires an unreasonably large computational domain to obtain accurate results. For these reasons, our
. All rights reserved.
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approach to obtain a fast and accurate algorithm is based on approximating Green’s function so that its application is split
between the spatial and Fourier domains.

We consider the problem of convolving a given function f with the free space Helmholtz Green’s function G,
uðxÞ ¼
Z

Rd
Gðx� yÞf ðyÞdy; ð1Þ
where G satisfies
ðDþ j2ÞGðxÞ ¼ �dðxÞ ð2Þ
and the Sommerfeld condition
lim
jxj ! 1

jxj
d�1

2
@G
@jxj � ijG
� �

¼ 0; j > 0: ð3Þ
We assume that f 2 LpðDÞ for some 1 6 p 61, and is supported in a bounded domain D. The function u is the solution to
ðDþ j2ÞuðxÞ ¼ �f ðxÞ ð4Þ
and satisfies the Sommerfeld condition.
In dimension d, the free space Helmholtz Green’s function is given by
GðxÞ ¼ i
4

j
2pjxj

� �ðd�2Þ=2

Hð1Þðd�2Þ=2ðjjxjÞ;
where Hð1Þðd�2Þ=2 is a Hankel function of the first kind and jxj ¼
Pd

j¼1x2
j

� �1=2
denotes the Euclidean norm of the vector x. We

focus our attention on dimensions d ¼ 3 and d ¼ 2, so that
GðxÞ ¼
1

4p
eijjxj

jxj for dimension d ¼ 3;
i
4 Hð1Þ0 ðjjxjÞ for dimension d ¼ 2:

(
ð5Þ
Our algorithm is designed to maintain its performance when applied to compactly supported functions with singularities
and/or discontinuities. For volumetric convolutions the algorithmic complexity scales as Oðjd logjþ Cðlog ��1ÞdÞ, where �
is the user-selected accuracy and C is a constant.

In our approach we separate the real and imaginary parts of Green’s function and approximate them in different ways.
The real part is approximated as a sum of two terms which are applied separately, one in the spatial and the other in the
Fourier domain. We note that this splitting between domains is the key idea in Ewald’s method for evaluating lattice sums
[1], and we elaborate further on this connection later (see also [2]).

The resulting approximation in the spatial domain is a sum of decaying Gaussians with positive coefficients. It is a natural
extension of a separated representation for the free space Poisson Green’s function, i.e., j ¼ 0 in (5), as a sum of Gaussians
[3,4]. For the Poisson Green’s function such approximation leads to fast algorithms for its application [5–7]. In the spatial
domain, we may use these algorithms as well as the fast Gauss transform in [8–10].

The approximation in the Fourier domain decays exponentially fast and is effectively band-limited. Since the kernel and
its approximation are radially symmetric, we construct quadratures in a ball incorporating the kernel as a part of the mea-
sure (see also [11]). The resulting trigonometric sums are then evaluated using the Unequally Spaced Fast Fourier Transform
(USFFT) [12–14], yielding a fast algorithm. The imaginary part of Green’s function is a delta function on the sphere of radius
j. With integration limited to a sphere, we also use the USFFT to compute the trigonometric sum resulting from our
discretization.

Our approach yields a fast algorithm for computing volumetric integrals and has the same complexity as the Fast Mul-
tipole Method (FMM) [15–17] for such problems. Although the FMM was originally designed to solve boundary integral
equations, it may also be used to compute volumetric integrals. We note that FMM relies on a directional approximation
and the diagonalization of translations whereas our approximation of Green’s function is radially symmetric. Also, as it
stands, FMM approximation differs for problems with large or small j. Indeed, the high frequency approximation used in
the FMM [15] breaks down as j ! 0 and is replaced by an alternative in [16,17] for the low frequency regime. We note
that our approach, as j ! 0, transitions to the Poisson problem without difficulty.

Beyond the FMM, there is a vast literature regarding algorithms for applying Green’s function. Let us mention several ap-
proaches for computing volumetric convolutions with Green’s function, typically described in the context of computing solu-
tions to the Lippmann–Schwinger equation. If the convolution is computed with a smooth rapidly decaying or periodic
function, then it is natural to compute the result entirely in the Fourier domain, an approach sometimes referred to as CGFFT
(see e.g. [18]). Applying this approach to functions with singularities presents difficulties either with maintaining accuracy or
with the cost of computation due to the slow decay of both the function and the kernel in the Fourier domain. There have
been a number of proposals to address these issues by using high order discretizations. In [19] the authors transform the
equation to polar coordinates and use the addition theorem for Hankel functions to separate the radial and angular integra-
tion. The procedure artificially band-limits Green’s function asserting that, for discontinuous scattering potentials, the error
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is inversely proportional to the square of the band-limit (see [19, Corollary 3.9]). The method in [20] also constructs a band-
limited version of Green’s function and suffers from similar accuracy problems for discontinuous scattering potentials (see
[20, Theorem 2]). The approach in [21] is based on an approximation of sufficiently smooth functions by a collection of
equally spaced Gaussians of fixed width. Given such an approximation, convolutions of Gaussians with Green’s function
are computed analytically. However, the effectiveness of this representation (or, alternatively, the accuracy of the result) de-
pends on the smoothness of the function (see [21, Theorems 1 and 2]), which renders the method ineffective for discontin-
uous functions. We note that in the context of solving the Lippmann–Schwinger equation, direct methods [22] have also
been developed. The algorithmic complexity for determining the scattered field as a solution of the Lippmann–Schwinger
equation is Oðj3Þ in dimension d ¼ 2.

We would like to emphasize two distinctive features of our approach. First, we guarantee user-selected finite accuracy �.
Since the cost of computation depends only weakly on accuracy, as ðlog ��1Þd, the algorithm remains efficient even when
applying the operator to functions with discontinuities. This should be compared with methods where the cost is estimated
in terms of their order p, yielding a cost proportional to ð��1Þd=p. Second, we note that algorithms for the quasi-periodic
Green’s function and those incorporating boundary conditions on simple domains have the same structure and complexity
as those of this paper and have been developed in [2].

The paper is organized as follows. In Section 2, we provide appropriate definitions and introduce our notation. In Section
3, we formulate and state the main results as two theorems. Then, in Section 4, we outline proofs of these theorems by orga-
nizing them as a sequence of propositions with technical details deferred to the Appendix. Next, in Section 5, we construct
quadratures in the Fourier domain for the efficient application of radially symmetric kernels. We describe a fast algorithm for
applying Green’s function and illustrate our approach with examples in Section 6. Finally, we summarize our results in Sec-
tion 7 and collect proofs in the Appendix.
2. Preliminaries

2.1. Fourier transform of radial functions

We define the Fourier transform in dimension d as
f̂ ðpÞ ¼
Z

Rd
f ðxÞe�ix�p dx ð6Þ
and its inverse as
f ðxÞ ¼ 1

ð2pÞd
Z

Rd
f̂ ðpÞeix�p dp: ð7Þ
For a radially symmetric function f, we use the same notation for the multi-dimensional and the associated one-dimensional
function, f ðxÞ ¼ f ðjxjÞ and note that f̂ ðpÞ is also a radially symmetric function satisfying
f ðrÞ ¼ 1

ð2pÞd=2rd=2�1

Z 1

0
f̂ ðqÞqd=2Jd=2�1ðqrÞdq; ð8Þ
where r ¼ jxj and q ¼ jpj. For convenience, we explicitly write (8) for dimension d ¼ 3
f ðrÞ ¼ 1
2p2r

Z 1

0
f̂ ðqÞ sinðqrÞqdq ð9Þ
and dimension d ¼ 2
f ðrÞ ¼ 1
2p

Z 1

0
f̂ ðqÞJ0ðqrÞqdq: ð10Þ
2.2. Free space Green’s function for the Helmholtz equation

On taking the Fourier transform of Green’s function (2), we obtain
bGðpÞ ¼ 1

jpj2 � j2
; ð11Þ
where p 2 Rd. The inverse Fourier transform of bG is a singular integral and its usual regularization
G�ðxÞ ¼ lim
k ! 0þ

1

ð2pÞd
Z

Rd

eix�p

jpj2 � j2 � ik
dp ð12Þ
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yields the outgoing and incoming Green’s functions
G�ðxÞ ¼ 1
4p

e�ijjxj

jxj ð13Þ
in dimension d ¼ 3 and
G�ðxÞ ¼ i
4

Hð1Þ0 ð�jjxjÞ ¼ �1
4

Y0ð�jjxjÞ þ i
4

J0ð�jjxjÞ ð14Þ
in dimension d ¼ 2.
Instead of (12), we prefer to use a different regularization which yields the same result, namely
G�ðxÞ ¼ lim
k ! 0þ

1

ð2pÞd
Z

Rd

eix�p

jpj2 � ðj� ikÞ2
dp: ð15Þ
For a proof see Appendix A.1.
We note that the outgoing Green’s function Gþ in (13) and (14) satisfies the Sommerfeld radiation condition (3). In what

follows we consider only the outgoing Green’s function (5) and drop the � notation. Let us define
bGðq; kÞ ¼ 1

q2 � ðjþ ikÞ2
ð16Þ
and write its real and imaginary parts as
ReðbGðq; kÞÞ ¼ 1
2q

q� j
ðq� jÞ2 þ k2

þ qþ j
ðqþ jÞ2 þ k2

 !
ð17Þ
and
ImðbGðq; kÞÞ ¼ 1
2q

k

ðq� jÞ2 þ k2
� k

ðqþ jÞ2 þ k2

 !
: ð18Þ
We observe that in the limit
lim
k ! 0þ

ImðbGðq; kÞÞ ¼ p
2q
ðdðq� jÞ � dðqþ jÞÞ ð19Þ
is a generalized function (see e.g. [23, Chapter III, Section 1.3]) which corresponds to integration over the d-dimensional
sphere. As j ! 0, the imaginary part vanishes and we attain the fundamental solution for the Poisson equation.

Note that (see e.g. [24, Section 4.1])
lim
k ! 0þ

Z 1

0

1
2q

q� j
ðq� jÞ2 þ k2

þ qþ j
ðqþ jÞ2 þ k2

 !
dq ¼ p:v:

Z 1

0

1
q2 � j2 dq; ð20Þ
where the principal value is considered about q ¼ j, so that
ReðGðxÞÞ ¼ 1

ð2pÞd
p:v:

Z
Rd

eix�p

jpj2 � j2
dp ¼ 1

ð2pÞd
lim

k ! 0þ

Z
Rd
ReðbGðjpj; kÞÞeix�p dp ð21Þ
and
ImðGðxÞÞ ¼ p
2ð2pÞd

Z
Rd

dðjpj � jÞ
jpj eix�pdp ¼ 1

ð2pÞd
lim

k ! 0þ

Z
Rd
ImðbGðjpj; kÞÞeix�p dp: ð22Þ
3. Approximation of the real part of Green’s function

Our goal is to approximate the real part of Green’s function (21) in order to compute convolutions
ðReðGÞ � f ÞðxÞ ¼ 1

ð2pÞd
p:v:

Z
Rd

bGðpÞf̂ ðpÞeix�p dp
in a fast and accurate manner. We split this operator into two, one acting as a well localized convolution in the spatial do-
main and the other as multiplication by an (effectively) compactly supported function in the Fourier domain. We write
bGðqÞ ¼ bF singðqÞ þ bF oscillðqÞ; ð23Þ
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where
bF singðqÞ ¼
1� e�a2ðq2�j2Þ=j2

q2 � j2 ;

bF oscillðqÞ ¼
e�a2ðq2�j2Þ=j2

q2 � j2

ð24Þ
and a is a real parameter to be selected later. Next, we outline the approximation and application of bF sing and bF oscill with the
details of estimates and associated parameter choices deferred to following sections.

Using
1� e�a2ðq2�j2Þ=j2

q2 � j2 ¼ 2
Z loga

j

�1
e�ðq

2�j2Þe2sþ2s ds;
we transform bF sing to the spatial domain to obtain
FsingðrÞ ¼
1

2d�1pd=2

Z 1

� loga
j

e�r2e2s
4 þj2e�2sþðd�2Þs ds: ð25Þ
We then approximate Fsing in the region r P d0 > 0 by a sum of decaying Gaussians with positive coefficients,
SsingðrÞ ¼
XN

n¼1

qne�rnr2
: ð26Þ
Thus, convolutions with Fsing are approximated by
ðSsing � f ÞðxÞ ¼
XN

n¼1

qn

Z
D

e�rn jx�yj2 f ðyÞdy:
Turning to bF oscill, we define8

bSoscillðqÞ ¼

e�a2 ðq2�j2 Þ=j2

2q

PM
m¼1

wm ðq� jÞe�smðq�jÞ2 þ ðqþ jÞe�smðqþjÞ2
� �

; 0 6 q 6 bj;

0; bj < q;

><>: ð27Þ
which, as we show below, accurately approximates bF oscill in the region jq� jjP minfjd; dg, where b > 1 and d > 0 are
parameters chosen later. The inverse Fourier transform of bSoscill is given by
SoscillðrÞ ¼
1

ð2pÞd=2rd=2�1

Z bj

0

bSoscillðqÞqd=2Jd=2�1ðqrÞdq ð28Þ
and we use it as an approximation to
FoscillðrÞ ¼
1

ð2pÞd=2rd=2�1
p:v:

Z 1

0

bF oscillðqÞqd=2Jd=2�1ðqrÞdq: ð29Þ
Thus, convolutions with Foscill are approximated in the Fourier domain as
Soscill � fð ÞðxÞ ¼ 1

ð2pÞd
Z
jpj6bj

bSoscillðjpjÞf̂ ðpÞeix�p dp:
As a result, we approximate the real part of Green’s function as
eGRðrÞ ¼ SsingðrÞ þ SoscillðrÞ: ð30Þ

The function Ssing captures the singularity of the real part of Green’s functions (13) and (14) at r ¼ 0 and Soscill their
oscillations.

Let us now state the main results of the paper.

Theorem 1. For any � > 0 we may select parameters d; d0;M; b;a ¼ aðb; dÞ, and N in (23)–(30), so that for r P d0 > 0 we have
jReðGðrÞÞ � eGRðrÞj 6 � 1þ 1
r

� �
ð31Þ
in dimension d ¼ 3, and
jReðGðrÞÞ � eGRðrÞj 6 � 1þ log 1þ 1
r2

� �
þ

ffiffiffi
r
p� �

ð32Þ
in dimension d ¼ 2.

The proof is given in Section 4. Using Theorem 1, the convolution with the real part of Green’s function in a bounded do-
main is estimated via

Theorem 2. Let D � Rd; d ¼ 2;3, be a bounded domain such that diamðDÞ 6 1. Given � > 0; eGR as in Theorem 1 and f 2 LpðDÞ for
1 6 p 61, we have
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kðReðGÞ � eGRÞ � fkLpðDÞ 6 �kfkLpðDÞ:
The proof is given in Section 4 and follows from Theorem 1.

Our approximation leads to fast methods for convolutions with the real part of Green’s functions (13) or (14) which we
discuss in detail in Section 6. Briefly, since Ssing is a sum of Gaussians, there are several fast algorithms available for its appli-
cation, e.g. [7] or the fast Gauss transform [8–10]. The second term, Soscill in (30), is applied in the Fourier domain as a mul-
tiplication operator. For this purpose, following [25,11], we construct quadratures incorporating bSoscill as part of the measure
to compute the integral and evaluate the resulting trigonometric sums using the USFFT (see [12–14]). Since bSoscill decays rap-
idly, we do not require decay of the Fourier transform of the function to which we apply Green’s function. Thus, we do not
need to impose any smoothness requirements on the function to maintain accuracy.

Remark 3. The imaginary part of Green’s function is not singular and, thus, does not require any special representation.
Applying this operator in the Fourier domain reduces to an integral on a sphere of radius j, which is discretized using an
appropriate quadrature for the sphere (e.g. the trapezoidal rule in dimension d ¼ 2, see Section 6 for details).

Remark 4. A naive attempt to separate the singularity in (13) by considering e.g. ðcosðjrÞ � 1Þ=r þ 1=r, does not yield the
same effect. Observe that ðcosðjrÞ � 1Þ=r has a discontinuous first derivative at zero when extended evenly and, therefore,
its Fourier transform does not decay sufficiently fast. Alternative splittings appear in the so-call particle mesh Ewald (when
j ¼ 0, see e.g. [26]) and use the complementary error function in space; other possible splittings are described in e.g. [27].
We find that these splittings do not lead to an analytic form conducive for our purposes.
3.1. Alternative derivation using Ewald’s approach

Another approach for arriving at (25) and (29) is by mimicking Ewald’s method [1]. For brevity, we consider only dimen-
sion d ¼ 3. Ewald’s approach uses the integral
1
4p

eijr

r
¼ 1

2p3=2

Z
C

e�r2t2þj2

4t2 dt; ð33Þ
where C is an appropriately chosen contour. Instead of (33) (and similar to Green’s function derivation in Section 2.2), we
add an imaginary part to j;jþ ik with k > j, and consider
1
4p

eiðjþikÞr

r
¼ 1

2p3=2

Z 1

0
e�r2t2þðjþikÞ2

4t2 dt: ð34Þ
The expression on the left side of the formula yields Green’s function as k ! 0þ, whereas the integral on the right side is
well defined only for k > j. To obtain (34) we use the primitive
1
2p3=2

Z
e�r2t2þðjþikÞ2

4t2 dt ¼ � eð�ijþkÞr

8pr
erfc

�ijþ k
2t

þ rt
� �

þ eðij�kÞr

8pr
erfc

�ijþ k
2t

� rt
� �
and [28, 7.1.16] to evaluate
lim
t ! 0þ

� eð�ijþkÞr

8pr
erfc

�ijþ k
2t

þ rt
� �

þ eðij�kÞr

8pr
erfc

�ijþ k
2t

� rt
� �

¼ 0
and
lim
t ! 1

� eð�ijþkÞr

8pr
erfc

�ijþ k
2t

þ rt
� �

þ eðij�kÞr

8pr
erfc

�ijþ k
2t

� rt
� �

¼ 1
4p

eðij�kÞr

r
:

As in Ewald’s method, let us introduce a real parameter g > 0 to split the region of integration in (34) into two intervals ð0;gÞ
and ðg;1Þ. In the interval ð0;gÞ, the Fourier transform (9) yields
1
2p3=2

Z g

0
e�r2t2þðjþikÞ2

4t2 dt ¼ 1
4p2r

Z g

0

Z 1

0
e
�q2þðjþikÞ2

4t2 sinðqrÞqdq
dt
t3 :
Since k > j, we are free to switch the order of integration to obtain
1
4p2r

Z 1

0

Z g

0
e
�q2þðjþikÞ2

4t2
dt
t3 sinðqrÞqdq ¼ 1

2p2r

Z 1

0

e
�q2þðjþikÞ2

4g2

q2 � ðjþ ikÞ2
sinðqrÞqdq:
The resulting expression is well defined for any k > 0 and, due to analytic dependence on k, taking the limit k ! 0þ and
using (20) and (19), we obtain
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1
2p3=2 lim

k ! 0þ

Z g

0
e�r2t2þðjþikÞ2

4t2 dt ¼ 1
2p2r

p:v:
Z 1

0

e
�q2þj2

4g2

q2 � j2 sinðqrÞqdqþ i
sinðjrÞ

4pr
:

Setting g ¼ j=ð2aÞ, we recover (29) and the imaginary part of Green’s function and, since the integral on the interval ðg;1Þ is
well defined for k ¼ 0, we recover (25) after the change of variable t ¼ es=2.

We note that in dimension d ¼ 2 we may follow the same steps but starting (for k > j) with
i
4

Hð1Þ0 ððj� ikÞrÞ ¼ 1
2p

Z 1

0
e�r2t2þðjþikÞ2

4t2
dt
t

instead of (34).

4. Estimates for Theorems 1 and 2

In this section, we provide the estimates required to obtain Theorems 1 and 2. The proof is split into a sequence of
propositions:

(1) Proposition 5 provides estimates for the error due to removing a small interval around the singularity at q ¼ j in (29)
and limiting the integration to a finite region, thus exploiting the exponential decay of bF oscill in (24).

(2) Proposition 8 gives an estimate of the error due to the discretization of the integral defining Fsing in (25).
(3) Proposition 10 provides an estimate of the error of the approximation of bF oscill in (24) by bSoscill in (27).
(4) Proposition 11 provides an estimate of the error of the approximation in the spatial domain of Foscill in (29) by Soscill in

(28).

The combination of these propositions yields a proof of Theorems 1 and 2. These estimates also allow us to select param-
eters b and a and elucidate their meaning.

In order to estimate the contribution of bF oscillðqÞ near q ¼ j, we introduce
I�ðrÞ ¼
1

ð2pÞd=2rd=2�1

Z j�minfjd;dg

0

bF oscillðqÞqd=2Jd=2�1ðqrÞdq ð35Þ
and
Iþ;bðrÞ ¼
1

ð2pÞd=2rd=2�1

Z bj

jþminfjd;dg

bF oscillðqÞqd=2Jd=2�1ðqrÞdq ð36Þ
for bj > jþminfjd; dg. We have

Proposition 5. For 0 < d 6 1=3 and b P
ffiffiffi
2
p

, let us select a in the definition of bF oscill as
a2 ¼ log d�1

b2 � 1
: ð37Þ
Then, for Foscill given in (29) and any r P 0, we have
jFoscillðrÞ � I�ðrÞ � Iþ;bðrÞj 6 d log d�1 2þ 1
r

� �

in dimension d ¼ 3, and
jFoscillðrÞ � I�ðrÞ � Iþ;bðrÞj 6 d log d�1 3þ
ffiffiffi
r
p� �
in dimension d ¼ 2.

The proof may be found in Appendix A.2. Proposition 5 allows us to select the parameter a given d and b. Recall that the
parameter b effectively limits the region of integration in the Fourier domain while d controls the distance to the singularity
at q ¼ j (in practice d� 1). With a in (37) we ensure that e�a2ðq2�j2Þ=j2

6 d for q P bj, which explains the choice of the
upper limit in the integral (36).

Remark 6. As j ! 0; bFoscill ! 0 and Fsing approaches the free space Green’s function for the Poisson equation. Thus, to
apply the operator with j ¼ 0, we convolve only with Fsing. This constitutes the smooth transition of our approximation to
that for Green’s function for the Poisson equation.

Remark 7. Although we only require b > 1, in practice the choice of this parameter does depend on j and d. One has to keep
in mind that while selecting b close to 1 reduces the size of the region of integration in (36), it is also important to control the
size of bF oscill near zero as it may become large. By setting q ¼ 0 in (24) and a as in (37), we obtain
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Fig. 1. Radially symmetric function bF oscill (24) with j ¼ 50p; d � 10�10 and (a) b ¼ 3 or (b) b ¼ 5.
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bF oscillð0Þ ¼ �
1

j2d1=ðb2�1Þ
:

Choosing the parameter b close to 1 may cause a loss of accuracy due to numerical cancellation as Fsing and Foscill could be
large and of opposite signs (see Fig. 4). Thus, by choosing b we strike a compromise between the size of the region of inte-
gration and the behavior of bF oscill near zero. For moderate size j we select b 	 3; for large j we may select a smaller b, and for
small j we do not need to compute in the Fourier domain at all (see previous remark). The impact of the choice of b is illus-
trated in Fig. 1.

Next, for the approximation of Fsing as a sum of Gaussians, we estimate the error of discretizing the integral in (25).

Proposition 8. Given Fsing in (25), 0 < � 6 1 and 0 < d0 6 1, there exists a quadrature with positive parameters qn and rn which
define Ssing in (26) such that
jFsingðrÞ � SsingðrÞj 6
1
r for 0 6 r < d0;
�
r for r P d0

(
ð38Þ
in dimension d ¼ 3 and
jFsingðrÞ � SsingðrÞj 6
log 1þ 1

r2

� �
for 0 6 r < d0;

� log 1þ 1
r2

� �
for r P d0

(
ð39Þ
in dimension d ¼ 2.

The proof may be found in Appendix A.3. As an example, we use the generalized Gaussian quadratures developed in [25,
Section 7] associated with Prolate Spheroidal Wave Functions (PSWF). In Fig. 2, we plot the relative error estimated in Prop-
osition 8 (for d ¼ 3) using these quadratures. We note that the number of terms in (26) can be further reduced using the
procedure in [3, Section 6].

Remark 9. In [3, Appendix A], 1=r is approximated by a sum of Gaussians using the trapezoid rule (as the first step) to
discretize
1
r
¼ 2ffiffiffiffi

p
p

Z 1

�1
e�r2e2sþs ds:
This yields an accurate discretization for r 2 ½d0;1
 due to the decay of the integrand and its derivatives. We note that this
integral and the one used to define Fsing in (25) differ only by the introduction of the parameter j and a finite endpoint.
Although this endpoint requires us to consider quadratures other than the trapezoid rule, we obtain a comparable number
of nodes to that estimated and reported in [3,29] for approximating 1=r. We display the number of terms, N in (25), as a func-
tion of � and j in Table 1.

In the next proposition we construct a smooth approximation of bF oscill in (24).

Proposition 10. Given 0 < d 6 1 and b > 1, consider bF oscill with a chosen as in (37). For any 0 < �0 6 1 there exists wm > 0 and
sm > 0 defining bSoscill in (27) such that
jbF oscillðqÞ � bSoscillðqÞj 6 �0
je�a2ðq2�j2Þ=j2

qðj2 � q2Þ ð40Þ
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Fig. 2. Relative error in discretization of the spatial part of the approximation (25) for dimension d ¼ 3 with parameters j ¼ 50p; � � 10�9; d0 � 10�9 and
a � 2, using log10 scale on both axes.

Table 1
Number of Gaussians in the spatial part approximation (26) in dimension d ¼ 3. We have chosen b ¼ 3;a2 ¼ log ��1

b2�1
, and d0 ¼

ffiffiffi
�
p

. We observe (and explain further
in the text) that the number of Gaussians depends logarithmically on � and decreases as j increases.

j ¼ 25 j ¼ 50 j ¼ 75 j ¼ 100 j ¼ 125 j ¼ 150

� ¼ 10�3 12 10 8 6 5 4
� ¼ 10�6 40 36 34 32 31 30
� ¼ 10�9 66 64 62 60 58 58
� ¼ 10�12 90 88 86 84 83 83
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for 0 6 q 6 j�minfjd; dg and
jbF oscillðqÞ � bSoscillðqÞj 6 �0
e�a2ðq2�j2Þ=j2

q2 � j2 ð41Þ
for jþminfjd; dg 6 q 6 bj. Furthermore
XM

m¼1

wmðqþ jÞe�smðqþjÞ2
6

2
qþ j

ð42Þ
for 0 6 q 6 bj and
XM

m¼1

wmðq� jÞ2e�smðq�jÞ2
6 2 ð43Þ
for j�minfjd; dg 6 q 6 jþminfjd; dg.

The proof of this proposition may be found in Appendix A.4.
Next, we estimate the spatial domain error introduced by this approximation. We assume that the parameters b and d

satisfy b P
ffiffiffi
3
p

and 0 < d 6 1=3.

Proposition 11. Given sufficiently small � > 0, we select b P
ffiffiffi
3
p

and determine 0 < d 6 1=3 such that � ¼ 5d logðcd�1Þ, where
c ¼ maxfj;1gðb2 � 1Þ=2. With these parameters chosen, we set a as in (37), select �0 ¼ d=ea2

and construct bSoscill in Proposition
10 and Soscill in (28).

Then, for r P 0, the error of approximating Foscill in (29) is estimated as
jFoscillðrÞ � SoscillðrÞj 6 � 1þ 1
r

� �

in dimension d ¼ 3, and
jFoscillðrÞ � SoscillðrÞj 6 � 1þ
ffiffiffi
r
p� �
in dimension d ¼ 2.

The proof of the proposition is provided in Appendix A.5. We conclude this section with the proofs of our main results.

Proof of Theorem 1. The proof is obtained by combining the estimates from Propositions 8 and 11. h

Proof of Theorem 2. Using Minkowski’s inequality for convolutions (see e.g. [24, p. 20]), we have
kðReðGÞ � eGRÞ � fkLpðDÞ 6 kReðGÞ � eGRkL1ðDÞkfkLpðDÞ 6 ðkFoscill � SoscillkL1ðDÞ þ kFsing � SsingkL1ðDÞÞkfkLpðDÞ:
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Using spherical coordinates and diamðDÞ 6 1, Proposition 11 yields
kFoscill � SoscillkL1ðDÞ 6 4p�
Z 1

0
ðr2 þ rÞdr ¼ 20p�

6

in dimension d ¼ 3, and
kFoscill � SoscillkL1ðDÞ 6 2p�
Z 1

0
ðr þ r3=2Þdr ¼ 18p�

10
in dimension d ¼ 2. Similarly, but using Proposition 8, we have
kFsing � SsingkL1ðDÞ 6 4p
Z d0

0
r dr þ �

Z 1

d0

r dr
� �

6 2p d2
0 þ �

� �

for d ¼ 3, and
kFsing � SsingkL1ðDÞ 6 2p
Z d0

0
log 1þ 1

r2

� �
r dr þ �

Z 1

d0

log 1þ 1
r2

� �
r dr

� �
6 2pðd2

0 log d�1
0 þ d2

0 þ �ðlog 2þ d2
0 log d�1

0 ÞÞ
for d ¼ 2. In dimension d ¼ 3 we select d0 ¼
ffiffiffi
�
p

; in dimension d ¼ 2 we choose d0 so that � ¼ d2
0 log d�1

0 . With these choices,
we combine the estimates and obtain the result. h

5. Quadratures in the Fourier domain

An algorithm to convolve with (28) requires appropriate quadratures to discretize the Fourier integral. Noting that the
kernel in (27) is radially symmetric and effectively band-limited, we follow the approach in [11] and develop an algorithm
applicable to any kernel of this type. We separate radial and angular variables and, in the radial direction, develop quadra-
tures for exponentials incorporating the kernel as a part of the measure. We describe our approach in dimension d ¼ 2 and
comment on the extension to dimension d ¼ 3 in Remark 16.

Using polar system of coordinates in the Fourier domain, we have
ðSoscill � f ÞðxÞ ¼ 1
4p2

Z 2p

0

Z bj

0

bSoscillðqÞf̂ ðq cos h;q sin hÞeiqðx1 cos hþx2 sin hÞqdqdh; ð44Þ
which we approximate as
ðeSoscill � f ÞðxÞ ¼ 1
2p

XJ

j¼1

pj

Lj

XLj�1

l¼0

f̂ ðqj cos hl;qj sin hlÞeiqjðx1 cos hlþx2 sin hlÞ; ð45Þ
where
eSoscillðx1; x2Þ ¼
1

2p
XJ

j¼1

pj

Lj

XLj�1

l¼0

eiqjðx1 cos hlþx2 sin hlÞ ð46Þ
and the nodes and weights are described below.

Proposition 12. Let f 2 LpðDÞ;1 6 p 61 and consider diamðDÞ 6 1 in dimension d ¼ 2. If Soscill is constructed via Proposition
11, then for � > 0 there are quadrature nodes ðqj cos hl;qj sin hlÞ and real coefficients pj in (45) such that
kðSoscill � eSoscillÞ � fkLpðDÞ 6 �kfkLpðDÞ:
Proof. To construct eSoscill in (46), we follow the approach in [11] and develop a polar grid in the disk of radius bj. First, using
the algorithm in [25], we construct radial quadratures
Z bj

�bj

bSoscillðjqjÞeiqtjqjdq�
XJdiam

j¼1

pje
iqj t

					
					 6 p� for jtj 6 1; ð47Þ
where jqjj 6 bj. The range jtj 6 1 follows because t ¼ ðx1 � y1Þ cos hþ ðx2 � y2Þ sin h, where x ¼ ðx1; x2Þ; y ¼ ðy1; y2Þ for
x; y 2 D and diamðDÞ 6 1. For the angular quadratures, we determine the number of equally spaced angular nodes for each
circle of radius qj (see [11, Section 3]), so that
Z 2p

0
eiqjððx1�y1Þ cos hþðx2�y2Þ sin hÞ dh� 2p

Lj

XLj�1

l¼0

eiqjððx1�y1Þ cos hlþðx2�y2Þ sin hlÞ

					
					 6 2p2�PJdiam

j¼1 pj

			 			 : ð48Þ
Since the radial quadratures in (47) are constructed on the diameter of the disk, using all angles in (48) covers the disk twice.
Thus, it is sufficient to use J ¼ bðJdiam þ 1Þ=2c radial nodes, where b�c denotes the integer part.



Table 2
Number of quadrature nodes, Jdiam, along the diameter in dimension d ¼ 2 (47) and the resulting total number, NF ¼

PJ
j¼1Lj , in the disk (49). We have chosen

b ¼ 3; d ¼ �, and a2 ¼ log ��1

b2�1
. We observe a weak dependence of the number of nodes on accuracy and effectively linear dependence of Jdiam on j for fixed �.

j ¼ 25 j ¼ 50 j ¼ 75 j ¼ 100 j ¼ 125 j ¼ 150

Jdiam Ntot Jdiam Ntot Jdiam Ntot Jdiam Ntot Jdiam Ntot Jdiam Ntot

� ¼ 10�3 25 505 49 1935 73 4274 97 7523 121 11677 145 16742
� ¼ 10�6 26 628 50 2240 74 4764 98 8258 122 12670 146 18009
� ¼ 10�9 27 715 51 2429 75 5133 99 8782 123 13366 147 18901
� ¼ 10�12 28 801 52 2636 76 5449 100 9255 124 14005 148 19701
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By adding and subtracting 1
4p2

R 2p
0

PJ
j¼1pje

iqjððx1�y1Þ cos hþðx2�y2Þ sin hÞ dh, using the triangle inequality, and estimates (47) and
(48), we obtain
jSoscillðx� yÞ � eSoscillðx� yÞj 6 �; x; y 2 D: ð49Þ
Finally, using Minkowski’s inequality for convolutions (see e.g. [24, p. 20]), (49), and recalling that diamðDÞ 6 1, we have
kðSoscill � eSoscillÞ � fkLpðDÞ 6 kSoscill � eSoscillkL1ðDÞkfkLpðDÞ 6 � � diamðDÞkfkLpðDÞ 6 �kfkLpðDÞ: �
We finish this section with several remarks.

Remark 13. Results in [25] indicate that the number of nodes in (47) is Jdiam 	 bjþ c1 log bjþ c2 log ��1. As described in
[11, Section 3.2], the number of angular nodes on the largest radius is LJ 	 bjþ c3 log ��1, where c1; c2 and c3 are constants.
Thus, the total number of quadrature nodes in the Fourier domain may be estimated as NF 	 ðbjÞ2 þ c0ðlog ��1Þ2, where c0 is
a constant. We note that the number of terms in (27) does not affect the final number of quadrature nodes since all these
terms are accounted for by the quadrature weights. We display the number of quadrature nodes as a function of � and j in
Table 2.

Remark 14. Although bSoscillðjqjÞjqj in (47) is not sign definite, we interpret the approximation in (47) as a quadrature (see
[25]). Furthermore, since bSoscill is a smooth function, we integrate across q ¼ j with no difficulty. In Fig. 3, we provide an
example of the quadratures in (47) and note the symmetry of the nodes qJdiam�jþ1 ¼ �qj and weights pJdiam�jþ1 ¼ pj.

Remark 15. To convolve with the imaginary part of Green’s function,
ðImðGÞ � f ÞðxÞ ¼ 1
8p

Z 2p

0
f̂ ðj cos h;j sin hÞeijðx1 cos hþx2 sin hÞ dh;
we use the angular discretization described in (48) to obtain the approximation
ðeGI � f ÞðxÞ ¼ 1
8p

XLj�1

l¼0

f̂ ðj cos hl;j sin hlÞeijðx1 cos hlþx2 sin hlÞ; ð50Þ
so that
kðImðGÞ � eGIÞ � fkLpðDÞ 6 �kfkLpðDÞ: ð51Þ
Remark 16. In dimension d ¼ 3, instead of (47) we use the construction in [25] to approximate
Z bj

�bj

bSoscillðjqjÞeiqtq2 dq�
XJdiam

j¼1

pje
iqj t

					
					 6 p2� ð52Þ
for jtj 6 1 (see Table 3 displaying Jdiam as a function of � and j). The angular discretization of the circle should be replaced by
that of the sphere.
6. Algorithm for computing convolutions with Green’s function

Let us describe an algorithm for computing convolutions with Green’s function
uðxÞ ¼
Z

D
Gðx� yÞf ðyÞdy
in dimension d ¼ 2;3, and estimate its complexity. We refer to f and u as the input and output functions. We first assume
that the input function and its Fourier transform (within a disk of radius proportional to j) are given, and we are free to
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Fig. 3. (a) Weights vs. nodes of the radial quadrature (47) in dimension d ¼ 2 with j ¼ 50p and b ¼ 3. (b) Absolute error in (47) using log10 scale on the
vertical axis.

Table 3
Number of quadrature nodes, Jdiam, along the diameter in dimension d ¼ 3 (52). We have chosen b ¼ 3; d ¼ �, and a2 ¼ log ��1

b2�1
. Note that these numbers are almost

the same as those in Table 2.

j ¼ 25 j ¼ 50 j ¼ 75 j ¼ 100 j ¼ 125 j ¼ 150

� ¼ 10�3 27 51 75 99 123 147
� ¼ 10�6 28 52 76 100 124 148
� ¼ 10�9 29 53 77 101 125 149
� ¼ 10�12 30 54 78 102 126 150
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discretize them as needed. We note that the cost associated with computing the band-limited Fourier transform is described
below and does not change the overall complexity of the algorithm.

Initialization:

(1) Fourier domain initialization: For fixed j and given accuracy �, we select b (which ultimately determines a in (37)) and
construct eSoscill using the NF -point quadrature given in (46), NF ¼

PJ
j¼1Lj (or its analogue in dimension d ¼ 3, see

Remark 16). We estimate the number of nodes as NF 	 ðbjÞd þ C0ðlog ��1Þd, where C0 is a constant (see Remark 13
and Tables 2 and 3 for illustration).

(2) Spatial domain initialization: For fixed j and given accuracy �, we construct Ssing as a Gaussian representation in (26)
with N terms, where a conservative estimate yields N 	 ðlog ��1Þ2 (in practice we observe N 	 log ��1, see Table 1). We
note that the number of terms N depends weakly on j, with N decaying as j grows and Ssing becomes more localized.

(3) Discretization of the input function: We use the multiresolution algorithm in [7] to adaptively discretize the input func-
tion with a tensor product basis having p scaling functions per dimension. If Nbox is the total number of boxes used to
represent the input function with accuracy �, then the total number of input points is Nin ¼ Nboxpd. In practical appli-
cations we choose p 	 log ��1 since it improves the overall performance. Thus, we have Nin 	 Nboxðlog ��1Þd. We note
that it is not hard to construct examples of functions for which an adaptive representation offers no advantage; in such
case the number of points is Nin 	 jd due to the required Nyquist sampling rate. Thus, in the worst case, we have
Nin 	 jd þ C1ðlog ��1Þd.

(4) Initialization of the output function: The output function, a sum of spatial and Fourier contributions, is evaluated on a
user chosen set of Nout points. While the spatial contribution may retain an adaptive structure if we use the algorithm
from [7], the Fourier contribution results in OðjdÞ points due to the required Nyquist sampling rate. Thus, unless there
are special circumstances, Nout 	 jd. Again, in the worst case we have Nout 	 jd þ C2ðlog ��1Þd.

Application of the operator:

(1) Convolution with Ssing: Using the algorithm in [7], the complexity of applying Ssing is Oðp � N � NinÞ. Alternatively, the fast
Gauss transform (see [8–10]) may be used and results in a similar computational complexity. Although p � N is for-
mally estimated as p � N 	 ðlog ��1Þ3, we note that within the range of parameters we experimented with, this factor
behaves effectively as a constant (the over estimation is, in part, due to the fact that the algorithm in [7] does not use
all Gaussian terms on all scales). With this caveat, the computational complexity of this step is Oðjd þ C3ðlog ��1ÞdÞ,
where C3 is a constant.

(2) Convolution with eSoscill and ImðGÞ: We evaluate the Fourier transform of the input function f̂ at the quadrature nodes
(49) and (51). Then, given the node locations for the output function, u, we use the USFFT [12–14] to evaluate the trig-
onometric sums (45) and (51) (or their analogue for dimension d ¼ 3, see remark above). Thus, the computational
complexity of applying eSoscill and ImðGÞ is OðNout þ NFÞ þ Oðjd logjÞ, or Oðjd log jþ C4ðlog ��1ÞdÞ, where C4 is a
constant.



2782 G. Beylkin et al. / Journal of Computational Physics 228 (2009) 2770–2791
The assumption that the band-limited Fourier transform of the input function is available does not change the overall
complexity of the algorithm (even for functions with discontinuities or singularities). Due to the band-limiting nature ofeSoscill (as well as of ImðGÞ), we only need to compute the Fourier transform of the input function within a ball of radius bj.
Using the USFFT [12–14] (which, in fact, was designed for this purpose), the computational cost scales at most as
Oððlog ��1Þdjd logjÞ. For example, the algorithm in [12] first projects the function onto a subspace of splines where the
number of splines is proportional to ðj log ��1Þd. This step is followed by the FFT requiring Oðjd log jÞ operations and
the final adjustment of the computed values involving OðjdÞ operations. Since a typical implementation of USFFT fixes
the accuracy, e.g. double precision, we estimate the overall cost of computing the band-limited Fourier transform as
dependent only on j.

The performance of both, the spatial and Fourier components of our method, have been examined in the references men-
tioned above. We note that in many practical instances the semi-analytic nature of our approximation may allow for addi-
tional savings.

6.1. Examples

We start by applying the operator to a delta function in dimension d ¼ 2. The motivation for presenting this example is
twofold: (i) to demonstrate that our approach is accurate for functions which do not decay in the Fourier domain and (ii) to
illustrate both parts of the approximation, Ssing (26) and eSoscill (46).

In Fig. 4, we plot the result of convolving with Ssing and eSoscill for different values of b. Fig. 4(b) and (d) demonstrates that
the spatial part Ssing is well localized and captures the singularity at r ¼ 0 of Green’s function (14). Also, as seen in Fig. 4(a)
and (c), the Fourier part eSoscill captures the oscillations of Green’s function. We note that the spike centered at zero in Fig. 4(a)
is larger than that in Fig. 4(c) due to the choice of parameter b (see Proposition 5 and Fig. 1). In Fig. 5, we plot the absolute
error of our approximation as a function of radius. We note that the error behaves better than the estimates obtained in The-
orem 1.
Fig. 4. Result of applying the Helmholtz operator in dimension d ¼ 2 with j ¼ 50p to a delta function, thus displaying the kernel (in the spatial domain).
The sum of eSoscill and Ssing approximates the real part of Green’s function. Figures (a) and (c) display eSoscill (46) for b ¼ 3 and b ¼ 5, (respectively) and Figures
(b) and (d) Ssing (26) for b ¼ 3 and b ¼ 5.



a b

Fig. 5. Absolute error (as a function of radius using log10 � log10 scale) of approximating the real part of Green’s function with j ¼ 50p and d0 � 10�8 for
parameter (a) b ¼ 3 and (b) b ¼ 5.
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Next we verify the accuracy of applying Green’s function to the discontinuous function:
f ðxÞ ¼
a; jxj 6 rf ;

0; jxj > rf



ð53Þ
with a 2 R and rf > 0. For this f, the solution to (4) in dimension d ¼ 2 satisfying the Sommerfeld condition is given by
uðxÞ ¼
a
j2 ð1þ c1J0ðjjxjÞÞ; jxj 6 rf ;

c2
a
j2 Hð1Þ0 ðjjxjÞ; jxj > rf ;

(
ð54Þ
where
c1 ¼
iHð1Þ1 ðrf jÞ

J1ðrf jÞY0ðrf jÞ � J0ðrf jÞY1ðrf jÞ
and
c2 ¼ �
iJ1ðrf jÞ

J1ðrf jÞY0ðrf jÞ � J0ðrf jÞY1ðrf jÞ
are selected to assure u 2 C1ðR2Þ. We apply to f our approximation of the two-dimensional Green’s function, so that we can
compare the result with the exact solution u in (54). We choose this example because f̂ ðqÞ has slow decay ðf̂ 	 1=q3=2Þ and,
thus, tests both the spatial and the Fourier parts of the algorithm. In our example we consider Green’s function with j ¼ 50p
and f with rf ¼ 1=5 and a ¼ j2. We choose � � 10�9 and b ¼ 3 (as in Fig. 5(a)) and construct Ssing in (26) and eSoscill in (46). It is
important to note that the L1-norm of the solution is kuk1 � 6:35, whereas that of the input function is
kfk1 ¼ j2 � 2:47 � 105. Since the purpose of our test is to demonstrate the accuracy of applying the approximate Green’s
function, we convolve Ssing with f in (53) directly (as a one-dimensional integral) and use the product of eSoscill and f̂ ðqÞ in
the Fourier domain.

In Fig. 6, we display the absolute error of the real and imaginary parts plotted along the diagonal of the unit box. Since
f � 105 for jxj 6 rf , we expect the absolute error of the real part to be five orders of magnitude larger than in the region
jxj > rf . The absolute error in Fig. 6(a) agrees with the relative error estimate in Theorem 2 if the norm of the input function
is taken into account. The absolute error due to approximation of the imaginary part of Green’s function is much better than
predicted by the estimate in (51). This is due to the exponential decay of the error in using the trapezoidal rule (see Fig. 6(b)).

Achieving a target absolute error for the output function requires an approximation of Green’s function that takes into
account the norm of the input function. However, even if this norm is large, the additional computational cost it implies
is minimal because the complexity of our algorithm scales logarithmically with accuracy.

We also provide an example as an illustration, where we convolve Green’s function with a fairly complicated function
with jump discontinuities, see Fig. 7.

Finally, we tabulate the number of quadrature nodes required to construct Ssing in (26) and eSoscill in (46) as a function of
the desired accuracy � and parameter j. This provides numerical evidence for claims made in Remark 13.

In Table 1, we display the number of Gaussian terms in Ssing (26) for dimension d ¼ 3 using the quadratures associated with
the PSWFs [25]. This table shows that for fixed j and within the range of considered parameters, the number of Gaussians
behaves more as Nð�Þ 	 log ��1 rather than Nð�Þ 	 ðlog ��1Þ2 as in the estimates in [3, Appendix A]. We note that as j grows,eSoscill accounts for a larger volume in the Fourier domain and, thus, Ssing requires fewer Gaussians as is reflected in Table 1.

In Table 2, we display the number of quadrature nodes in the Fourier domain (in dimension d ¼ 2) along the diameter
(47) and their total number within the disk of radius bj (49). For fixed �, we observe that Jdiam 	 j and NF 	 j2. This result



a b

Fig. 6. For f in (53), we display (a) real part and (b) imaginary part of the absolute error of the computed solution (4) satisfying the Sommerfeld condition.
The error is plotted along the unit box diagonal using log10 scale on the vertical axis. Green’s function was constructed with parameters from Fig. 5a. Note
that Theorem 2 only assures the relative error and in this example kfk1 � 105.

Fig. 7. Convolution with Green’s function ðj ¼ 50pÞ, where the different views of the function are shown in Figures (a) and (b). We display the real part (c)
and imaginary part (d) of the result.
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is expected as the number of nodes in this construction approaches optimal (i.e., effectively approaches bj=p) as j gets large.
For fixed j, we observe Jdiam depends weakly on � and, thus, effectively NF 	 log ��1 rather than NF 	 ðlog ��1Þ2 obtained by
estimates.

In Table 3, we display the number of radial quadrature nodes in the Fourier domain along the diameter in dimension d ¼ 3
in (52). We note that the number of quadrature nodes along the diameter in dimensions d ¼ 2 and d ¼ 3 are almost the same.

7. Conclusion and remarks

We develop an approximation of the free space Helmholtz Green’s function in dimensions d ¼ 2;3 by splitting its action
between the spatial and Fourier domains. Our approximation achieves:

� a spatial domain representation as a sum of Gaussians, capturing the singularity of Green’s function at zero, and
� a Fourier domain representation as a smooth, radially symmetric and effectively band-limited kernel.

Using properties of this approximation, we construct a fast and accurate algorithm for computing convolutions with
Green’s function and illustrate its performance in dimension d ¼ 2. We indicate how to extend the algorithm (specifically,
by using a discretization of a sphere in the Fourier domain) to dimension d ¼ 3. We expect our approach to be most useful
for accurate computations in problems where the media or potentials are described by functions with discontinuities or
singularities.

The extension of our approach to the Helmholtz Green’s function with periodic or Dirichlet/Neumann boundary condi-
tions may be found in [2].
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Appendix A. A.1. Proof of regularization

Since 1=ðq2 � ðj� ikÞ2Þ is radially symmetric, we apply (9) and (10).
In dimension d ¼ 3, using [30, 3.723 (3)], we have
lim
k ! 0þ

1

jxj
1
2ð2pÞ

3
2

Z 1

0

q3
2J1

2
ðjxjqÞ

q2 � ðj� ikÞ2
dq ¼ lim

k ! 0þ

1
2p2jxj

Z 1

0

q sinqjxj
q2 � ðj� ikÞ2

dq ¼ 1
4p

e�ijjxj

jxj :
In dimension d ¼ 2, using [30, 6.532 (4), 28, 9.6.4], we obtain
lim
k ! 0þ

1
2p

Z 1

0

qJ0ðjxjqÞ
q2 � ðj� ikÞ2

dq ¼ 1
2p

K0ð�ijjxjÞ ¼ i
4

Hð1Þ0 ð�jjxjÞ;
where Hð1Þ0 is the zeroth order Hankel function of the first kind.

A.2. Proof of Proposition 5

Proof. The proof combines the estimates from Lemmas 17 and 18. Because of the assumption on a,
e�a2ðb2�1Þ ¼ d
and since b P
ffiffiffi
2
p

and d 6 1=3 we have
de2a2d ¼ dd
� 2d

b2�1 6 dd�d
6 2d: ð55Þ
For d ¼ 3 we obtain
jFoscillðrÞ � I�ðrÞ � Iþ;bðrÞj 6
de2a2d

2p2 ð6þ 9a2Þ þ e�a2ðb2�1Þ

4p2ra2ðb2 � 1Þ
6

6d
p2 þ

9d log d�1

p2ðb2 � 1Þ
þ d

4p2r log d�1 6 d log d�1 2þ 1
r

� �
;

where we again used the assumptions on b;a, and log d�1 > 1.
Similarly for d ¼ 2 we have
jFoscillðrÞ � I�ðrÞ � Iþ;bðrÞj 6
de2a2d

2p
ffiffiffiffiffi
6r
p

þ 6a2 þ 8
3

� �
þ e�a2ðb2�1Þ

4pa2ðb2 � 1Þ
6

ffiffiffi
6
p ffiffiffi

r
p

d
p

þ 6d log d�1

p
þ 8d

3p
þ d

4p log d�1

6 d log d�1 3þ
ffiffiffi
r
p� �

: �
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A.3. Proof of Proposition 8

Proof. We begin by truncating the region of integration in (25) to the interval ½� logða=jÞ; c
 where c will be chosen later.
We claim that there exists a N-term quadrature with nodes xn and weights xn > 0 (see e.g. the generalized Gaussian
quadratures in [25, Section 7]), such that in dimension d ¼ 3 we have
1
4p3=2

Z c

� loga
j

e�r2e2s
4 ej2e�2sþs ds�

XN

n¼1

qne�rnr2

					
					 6 �

2r
ð56Þ
for 0 6 r <1, where qn ¼ xnej2e�2xnþxn=4p3=2 and rn ¼ e2xn=4. Using the definition of Fsing (25), and noting that the integrand
is positive, we have
FsingðrÞ �
XN

n¼1

qne�rnr2

					
					 6 �

2r
þ 1

4p3=2

Z 1

c
e�r2e2s

4 ej2e�2sþs ds: ð57Þ
Using the change of variable t ¼ r2e2s=4, and estimating ej2e�2s by its upper bound, we have
IðdÞ ¼ 1

2d�1pd=2

Z 1

c
e�r2e2s

4 ej2e�2sþðd�2Þs ds 6
ej2e�2c

4pd=2rd�2 C
d
2
� 1;

ecr
2

� �2
 !

; ð58Þ
where Cð�; �Þ is the incomplete Gamma function see e.g. [28, 6.5.3]. Using [28, 6.5.17],
Ið3Þ 6 ej2e�2c

4pr
1� erf

ecr
2

� �� �
;

we select c sufficiently large so that
ej2e�2c

4pr
1� erf

ecr
2

� �� �
6

1
2r for 0 6 r < d0;
�

2r for r P d0:

(
ð59Þ
We use � 6 1, (59) and (57) to obtain (38).
Similarly in dimension d ¼ 2, we construct a quadrature
1
2p

Z c

� loga
j

e�r2e2s
4 ej2e�2s

ds�
XN

n¼1

qne�rnr2

					
					 6 �2 log 1þ 1

r2

� �
ð60Þ
for 0 6 r <1, where qn ¼ xnej2e�2xn
=2p and rn ¼ e2xn=4. Instead of (57) we have
FsingðrÞ �
XN

n¼1

qne�rnr2

					
					 6 �2 log 1þ 1

r2

� �
þ 1

2p

Z 1

c
e�r2e2s

4 ej2e�2s
ds: ð61Þ
Using (58) and [28, 6.5.15, 5.1.20] we have
Ið2Þ 6 1
4p

ej2e�2c
E1

e2cr2

4

� �
6

1
4p

ej2e�2c
e�

e2cr2
4 log 1þ 4

e2cr2

� �
;

where E1 is the Exponential Integral [28, 5.1.1]. Selecting c sufficiently large, we have
1
4p

ej2e�2c
e�

e2cr2
4 log 1þ 4

e2cr2

� �
6

1
2 log 1þ 1

r2

� �
for 0 6 r < d0;

�
2 log 1þ 1

r2

� �
for r P d0:

(
ð62Þ
We use � 6 1; d0 6 1, (62) and (61) to obtain (39). h
A.4. Proof of Proposition 10

Proof. We let l ¼ minfjd; dg and use Lemma 19 with ~d ¼ l=ðjðbþ 1ÞÞ to obtain
1
p2 �

XM

m¼1

~wme�~smp2

					
					 6 �0

p2
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for p 2 ½~d;1
. Substituting p ¼ ðq� jÞ=ðjðbþ 1ÞÞ and using b > 1 and d < 1 we have
1

ðq� jÞ2
�
XM

m¼1

wme�smðq�jÞ2
					

					 6 �0

ðq� jÞ2
ð63Þ
for q 2 ½0;j� l
 [ ½jþ l;jb
 and
1

ðqþ jÞ2
�
XM

m¼1

wme�smðqþjÞ2
					

					 6 �0

ðqþ jÞ2
ð64Þ
for q 2 ½0; bj
, where
wm ¼
~wm

ðjðbþ 1ÞÞ2
ð65Þ
and
sm ¼
~sm

ðjðbþ 1ÞÞ2
: ð66Þ
Multiplying (63) by q� j for q > j and j� q for q < j and multiplying (64) by qþ j, we have
1
q2 � j2 �

1
2q

XM

m¼1

wmððq� jÞe�smðq�jÞ2 þ ðqþ jÞe�smðqþjÞ2 Þ
					

					 6 �0

2q
jq� jj
ðq� jÞ2

þ qþ j
ðqþ jÞ2

 !
for q 2 ½0;j� l
 [ ½jþ l; bj
. Multiplying by e�a2ðq2�j2Þ=j2 we attain (40) and (41). Finally, since �0 6 1, multiplying (64) by
qþ j we obtain (42) and (43) follows from (85). h
A.5. Proof of Proposition 11

Proof. In order to use (28) and (29), we first estimate the difference bSoscill � bF oscill in the regions q 2 ½0;j� l
 and
q 2 ½jþ l; bj
, where l ¼minfjd; dg. As a second step, we estimate the Fourier integral of bSoscill in the region
q 2 ½j� l;jþ l
 and use Proposition 5 to estimate bF oscill in the regions q 2 ½j� l;jþ l
 and q 2 ½bj;1Þ.

We first prove the proposition for d ¼ 3 and then point out how to approach the d ¼ 2 case. We estimate
jSoscillðrÞ � FoscillðrÞj 6 I1ðrÞ þ I2ðrÞ þ I3ðrÞ þ I4ðrÞ;
where
I1ðrÞ ¼
1

2p2r

Z j�l

0
jbSoscillðqÞ � bF oscillðqÞjj sinðqrÞjqdq; ð67Þ

I2ðrÞ ¼
1

2p2r

Z bj

jþl
jbSoscillðqÞ � bF oscillðqÞjj sinðqrÞjqdq; ð68Þ

I3ðrÞ ¼
1

2p2r

Z jþl

j�l

bSoscillðqÞ sinðqrÞqdq
				 				; ð69Þ

I4ðrÞ ¼
1

2p2r
p:v:

Z jþl

j�l

bF oscillðqÞ sinðqrÞqdqþ
Z 1

bj

bF oscillðqÞ sinðqrÞqdq
				 				: ð70Þ
Using (40), e�a2q2=j2
6 1; j sinðqrÞj 6 1, and the definitions of �0 and c, we have
I1ðrÞ 6
�0ea2

4p2r

Z j�l

0

2j
j2 � q2 dq ¼ �0ea2

4p2r
log

2j� l
l

6
�0ea2

4p2r
logð2 maxfj;1gd�1Þ

6
�0ea2

4p2r
logðcd�1Þ ¼ d

4p2r
logðcd�1Þ ð71Þ
and, using (41) and our definition of c,
I2ðrÞ 6
�0

4p2r

Z bj

jþl

2q
q2 � j2 dq ¼ �0

4p2r
log

j2ðb2 � 1Þ
lðlþ 2jÞ 6

�0

4p2r
log

maxfj;1gðb2 � 1Þd�1

2

 !
¼ �0

4p2r
logðcd�1Þ

6
d

4p2r
logðcd�1Þ: ð72Þ



To estimate (69), we split it into two terms and, in the first term, change variables q ¼ q� j so that
jI3ðrÞj 6
Z l

�l

XM

m¼1

wmqe�smq2
f ðqþ jÞdq

					
					þ

Z jþl

j�l

XM

m¼1

wmðqþ jÞe�smðqþjÞ2 f ðqÞdq
					

					; ð73Þ
where
f ðqÞ ¼ 1
4p2r

e�a2ðq2�j2Þ=j2
sinðqrÞ:
For the first term in (73) we use Lemma 20 and (43) to obtain
Z l

�l

XM

m¼1

wmqe�smq2
f ðqþ jÞdq

					
					 6 max

q2½�l;l

f 0ðqþ jÞj j

Z l

�l

XM

m¼1

wmq2e�smq2
dq 6 4l max

q2½j�l;jþl

jf 0ðqÞj: ð74Þ
Using j sinðqrÞ=rj 6 q and ðjþ lÞ2=j2
6 9=4, we have
max
q2½j�l;jþl


jf 0ðqÞj ¼ max
q2½j�l;jþl


e�a2ðq2�j2Þ=j2

4p2r
r cosðqrÞ � 2a2q

j2 sinðqrÞ
� �					

					 6 e2a2l=j

4p2 1þ 9a2

2

� �
: ð75Þ
For the second term in (73) we use (42) and jf ðqÞj 6 qe2a2l=j=4p2 to obtain
Z jþl

j�l

XM

m¼1

wmðqþ jÞe�smðqþjÞ2 f ðqÞdq
					

					 6 e2a2l=j

4p2

Z jþl

j�l

2q
qþ j

dq 6
le2a2l=j

p2 : ð76Þ
Combining
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Thus, we have
1
2p

Z jþl

j�l

bSoscillðqÞJ0ðqrÞqdq
				 				 6 d logðcd�1Þ 58

15p
þ 4

p
ffiffiffi
r
p� �

: ð81Þ
Using Proposition 5 and (79)–(81), we obtain the result. h
A.6. Proof of auxiliary results

Lemma 17. For 0 < d 6 1=2, any real parameter a, and r P 0 we have
1
2p2r

p:v:
Z jþl

j�l

bF oscillðqÞ sinðqrÞqdq
				 				 6 de2a2d

2p2 ð6þ 9a2Þ ð82Þ
in dimension d ¼ 3 and
1
2p p:v:

Z jþl

j�l

bF oscillðqÞJ0ðqrÞqdq
				 				 6 de2a2d

2p
ffiffiffiffiffi
6r
p

þ 6a2 þ 8
3

� �
ð83Þ
in dimension d ¼ 2, where l ¼minfjd; dg.

Proof. In order to use Lemma 20, for dimension d ¼ 3 we define
f ðqÞ ¼ 1
2p2r

e�a2ðq2�j2Þ=j2

qþ j
q sinðqrÞ
and estimate
f 0ðqÞ ¼ 1
2p2

e�a2ðq2�j2Þ=j2

qþ j
q cosðqrÞ þ sinðqrÞ

r
1� q

qþ j
� 2a2q2

j2

� �� �

as
max
q2½j�l;jþl


jf 0ðqÞj 6 1
2p2 e2a2l=j jþ l

2j� l
3þ 2

ðjþ lÞ2

j2 a2

 !

using je�a2ðq2�j2Þ=j2 j 6 e2a2l=j and j sinðqrÞ=rj 6 q. Since l ¼ minfjd; dg and d 6 1=2, we have ðjþ lÞ=ð2j� lÞ 6 1 and
ðjþ lÞ2=j2

6 9=4, which yields
2l max
q2½j�l;jþl


jf 0ðqÞj 6 2l
2p2 e2a2d 3þ 9

2
a2

� �
6

d
2p2 e2a2dð6þ 9a2Þ:
Similarly, in dimension d ¼ 2 we define
f ðqÞ ¼ 1
2p

e�a2ðq2�j2Þ=j2

qþ j
qJ0ðqrÞ
and estimate
f 0ðqÞ ¼ 1
2p

e�a2ðq2�j2Þ=j2

qþ j
�rqJ1ðqrÞ þ J0ðqrÞ 1� q

qþ j
� 2a2q2

j2

� �� �
:

Using jJ0ðxÞj 6 1; jJ1ðxÞj 6 3=ð2
ffiffiffi
x
p
Þ (see [31, (4)]), 1=ðqþ jÞ 6 2=3j; ðjþ lÞ2=j2

6 9=4, and then
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jþ lp

=j 6
ffiffiffi
3
p

=
ffiffiffiffiffiffiffi
2j
p

and
d P maxfl=j;l=

ffiffiffiffi
j
p
g, we obtain
2l max
q2½j�l;jþl


jf 0ðqÞj 6 2le2a2d

3pj
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðjþ lÞ

p
2

þ 2þ 9
2
a2

 !
6

de2a2d

2p
ffiffiffiffiffi
6r
p

þ 8
3
þ 6a2

� �
: �
Lemma 18. For b > 1, any real parameter a, and r P 0 we have
1
2p2r

Z 1

bj
jbF oscillðqÞ sinðqrÞqjdq 6 e�a2ðb2�1Þ

4p2ra2ðb2 � 1Þ
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in dimension d ¼ 3, and
1
2p

Z 1

bj
jbF oscillðqÞJ0ðqrÞqjdq 6 e�a2ðb2�1Þ

4pa2ðb2 � 1Þ
in dimension d ¼ 2.

Proof. Using the monotonicity of 1=ðq2 � j2Þ for q 2 ½bj;1Þ in d ¼ 3, we have
1
2p2r

Z 1

bj
jbF oscillðqÞ sinðqrÞqjdq 6 1

2p2r

Z 1

bj

qe�a2ðq2�j2Þ=j2

q2 � j2 dq 6
ea2

2p2rj2ðb2 � 1Þ

Z 1

bj
qe�a2q2=j2

dq ¼ e�a2ðb2�1Þ

4p2ra2ðb2 � 1Þ
and, similarly for d ¼ 2, we have
1
2p

Z 1

bj

bF oscillðqÞJ0ðqrÞqdq
				 				 6 e�a2ðb2�1Þ

4pa2ðb2 � 1Þ
: �
Lemma 19. For 0 < ~d 6 1 and �0 > 0, there exists ~wm > 0, ~sm > 0 and an integer eN such that
1
x2 �

XeN
m¼1

~wme�~smx2

						
						 6 �0

x2 ð84Þ
for ~d 6 x 6 1,
XeN
m¼1

~wme�~smx2
6

1þ �0

x2 ð85Þ
for 0 6 x < ~d and
eN 	 log ��1
0 ðlog ��1

0 þ log ~d�1Þ:
Proof. See [29]. h

Lemma 20. For f 2 C1½�a; a
, where a > 0, we have
p:v:
Z a

�a

f ðxÞ
x

dx
				 				 6 2a max

x2½�a;a

jf 0ðxÞj:
Furthermore, for s > 0 we have
Z a

�a
xe�sx2

f ðxÞdx
				 				 6 max

x2½�a;a

jf 0ðxÞj

Z a

�a
x2e�sx2

dx:
Proof. Use the first order Taylor expansion of f about 0. h
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